Sparse coding in modular networks
نویسندگان
چکیده
منابع مشابه
Sparse Coding in Sparse Winner Networks
This paper investigates a mechanism for reliable generation of sparse code in a sparsely connected, hierarchical, learning memory. Activity reduction is accomplished with local competitions that suppress activities of unselected neurons so that costly global competition is avoided. The learning ability and the memory characteristics of the proposed winner-take-all network and an oligarchy-take-...
متن کاملSupervised Deep Sparse Coding Networks
In this paper, we propose a novel multilayer sparse coding network capable of efficiently adapting its own regularization parameters to a given dataset. The network is trained end-to-end with a supervised task-driven learning algorithm via error backpropagation. During training, the network learns both the dictionaries and the regularization parameters of each sparse coding layer so that the re...
متن کاملSparse coding with memristor networks.
Sparse representation of information provides a powerful means to perform feature extraction on high-dimensional data and is of broad interest for applications in signal processing, computer vision, object recognition and neurobiology. Sparse coding is also believed to be a key mechanism by which biological neural systems can efficiently process a large amount of complex sensory data while cons...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroscience
سال: 2010
ISSN: 1662-453X
DOI: 10.3389/conf.fnins.2010.03.00112